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BOTT'S VANISHING THEOREM
FOR REGULAR LIE ALGEBROIDS

JAN KUBARSKI

ABSTRACT. Differential geometry has discovered many objects which deter-
mine Lie algebroids playing a role analogous to that of Lie algebras for Lie
groups. For example:

— differential groupoids,
— principal bundles,
— vector bundles.
— actions of Lie groups on manifolds,
-— transversally complete foliations,
— nonclosed Lie subgroups,
— Poisson manifolds,
— some complete closed pseudogroups.
We carry over the idea of Bott's Vanishing Theorem to regular Lie al-

gebroids (using the Chern-Weil homomorphism of transitive Lie algebroids
investigated by the author) and, next, apply it to new situations which are
not described by the classical version, for example, to the theory of transver-
sally complete foliations and nonclosed Lie subgroups in order to obtain some
topological obstructions for the existence of involutive distributions and Lie
subalgebras of some types (respectively).

1. INTRODUCTION

In [K3] the author defined the Chern-Weil homomorphism

(1.1) hA:

of a regular Lie algebroid (A, [-, -J, 7) over a foliated manifold (A/, F), generalizing
the well-known notion from the theory of principal bundles. (Every principal bundle
has a transitive Lie algebroid [Kl], [MA] — more precisely, there are three different
but equivalent such constructions.) In (1.1) F = Im7 C TM, and Hp(M) is the
algebra of tangential cohomology classes. Besides, g — Ker7 is the adjoint Lie
algebra bundle of A and I°(A) := ®fc-° Iok(A) where Iok(A) := (Sec(\ 9*))i°(A)
is the space of cross-sections of the symmetric fc-power of g* which are invariant
with respect to the "adjoint representation" of A on g. We recall that F 6 Iok(A)
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if and only if

( 7 °
k

The construction of the Chern-Weil homomorphism of regular Lie algebroids is
the above-mentioned generalization due to the following:

Theorem 1.1. [K3, Th.5.6.1] For a principal bundle P = P(M,G], there exists
a natural monomorhism of algebras v : (V0*)/(G) —* I°(A(P)) such that /IA(F) °
v = hp (Q denotes the Lie algebra of G, (V0*)/(G) ~~ the space of G-invariant
polynomials and hp — the Chern-Weil homomorphism of P). v is an isomorphism
if P is connected (G may be disconnected !). D

This theorem also means that the Chern-Weil homomorphism of a principal
bundle P is a characteristic feature of its Lie algebroid A(P) (provided only that
P is connected). We pay our attention to the fact that this holds although in the
Lie algebroid A(P) there is no direct information about the structure Lie group of
P (which may be disconnected)!

Remark 1.2. It should be added that many years ago N. Teleman in 1972 [Tl], [T2]
had constructed the Chern-Weil characteristic classes for some exact sequences of
R-Lie algebras and ^"-modules 0 — > H ^ P ^ T —> Q (R = commutative ring
with 1, T = commutative R—algebra with 1). For the case of the exact sequence
of real Lie algebras and n°(M)-modules 0 —> Secg —» Sec A —> Sec-F —*• 0 of the
cross-sections corresponding to the Atiyah sequence of a regular Lie algebroid A
over a foliated manifold (M, F), one obtains in this way the characteristic classes
constructed in [K3] via (1.1). Teleman had also noticed that his construction is a
generalization of the Chern-Weil characteristic classes of principal bundles provided
that the structure Lie groups are connected. The same result was repeated in [Kl]
by the method of keeping the apparatus of principal bundles only. The final solution
of the mutual relation between the Chern-Weil characteristic classes of principal
bundles and of their Lie algebroids is done in Th. 1.1 above. We add that to prove
this fact, the theory of representations of principal bundles on vector bundles was
initiated.

By using the fact (discovered by P. Molino [MO1]) that possess a transitive Lie
algebroid, it is possible to apply the Chern-Weil homomorphism to these foliations.
The significance of this homomorphism is as follows:

Theorem 1.3. [K3] The nontriviality of the Chern-Weil homomorphism of the Lie
algebroid A(M,F) of a transversally complete foliation (M, F) means the nonex-
istence of an involutive distribution C C TM such that (i) C fl Eb = E, (ii)
C + Eh = TM, (i\\) Cx = { X ( x ) - X G L(M, F)r\c C} for each xe M, where E
and Eb denote the vector bundles tangent to T and to the basic foliation T^^ respec-
tively. [We add that each involutive distribution C satisfying conditions (i)-(iii)
determines a flat connection in A(M,F).\ • this means the nonexis-
tence of a vector subbundle Q of the transverse bundle Q, such that (i) Q = Q1 © Q
(Q' = Eb/E), (ii) Qx = {£*; ^ € / (M;^) H SecQ} for each x e M. D

The answer to the question concerning the existence of transversally complete
foliations whose Lie algebroids possess the nontrivial Chern-Weil homomorphism
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is: YES. The fact that, among them, there are ones whose Lie algebroids are not
integrable (i.e. which are not isomorphic to the Lie algebroid of any principal
bundle), see Th.1.4 below, takes a great significance in differential geometry, —ft
indicates, for example, that the method of Lie algebroids in differential geometry
acquires a great value beyond the theory of principal bundles (and differential
groupoids).

Theorem 1.4. [K3] If G is a connected, compact and semisimple Lie group and
H C G is its arbitrary connected nonclosed Lie subgroup, then the Chern- Weil ho-
momorphism of the foliation of left cosets of G by H is nontrivial. Adding the
simple connectedness of G, we get, according to Almeida- Molino's Theorem [A-M]?

a nonintegrable transitive Lie algebroid having the nontrivial Chern- Weil homomor-
phism. d

This paper is devoted to carrying the idea of Bott's Vanishing Theorem over to
regular Lie algebroids. Namely, we check

Theorem 1.5 (Bott's Vanishing Theorem). Let (A, [•,-}, 7) be a regular Lie al-
gebroid over (M,F) and Pont(^4) :— Im(h^) C Hp(M) the Pontryagin algebra
of A. If A admits a flat partial connection A' over an involutive distribution
F1 c F c TM, then

Pontp(A) = 0 for p>2-(q + l)

where q = r&nk(F/Ff). //, moreover, X' admits a basic adapted connection, then

Pontp(.4) = 0 for p > q + 1. D

This theorem is (in this paper) interpreted for transversally complete foliations
and nonclosed Lie subgroups.

2. IDEALS AND VECTOR BUNDLES

Let V, W be any real vector spaces. Recall that [G]
— If W C /\ V, then the left ideal Iw C /\ generated by W has a gradation,

i.e. Iw = ® ~ lyy w^ere Iw = Iw ^ A 1V>' hence Iw is two-sided. Of course,

- — IfWcVj then the p-th power of I\y , (I\v)p, equals J A P w.

For W C V, we put W^ = [v* € F*; Mw 6 W, {v*, w) = 0}.
The following proposition entirely describes the ideal / A p/w±y

Proposition 2.1. (See, for example, [A] ). In the case of a finite- dimensional

vector space V, we have, for h > p, <f> £ A P(w±, <^> Va 6 /\p W, i(a)((/>) — 0

(for the operator i (a) , see [G]). D

The above theorem remains valid also in the infinite-dimensional case [J. Kubar-
ski, unpublished].

Take now two vector bundles Ff and F on a paracompact manifold M, such that
F' C F, and define, for p > 1, a vector subbundle / A p F, of /\ by

'(F'J C

Of course, the space of global C^-cross-sections Sec(7 A P F / ) sets up an ideal in

the algebra Sec(/\F). Using the paracompactness of M we have:
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Proposition 2.2. Sec(/APF ,) = (SecIF')p* P > l- D

Consider also the symmetric algebra 0 - Sec V F and its ideals 0 ~p Sec V
p > 1, and /secF- Using the paracompactness of M, we can also assert

2.3. ®pSec\JF = (ISecF)P,p>l. D

3. THE CATEGORY OF REGULAR LlE ALGEBROIDS; A SURVEY OF EXAMPLES

The notion of a Lie algebroid comes from J. Pradines [P] and was invented for the
study of differential groupoids. Let F be a (7°° constant dimensional and involutive
distribution on a C°° Hausdorff paracompact connected manifold M. By a regular
Lie algebroid over (M, F) ([K3], [MA], [P]) we mean a system

(3.1) (A, [.,-], 7)

consisting of a vector bundle A over M and mappings

I-, •] : Sec,4 x Sec.4 -> SecA, 7 : A -> TM,

such that (i) (Sec ̂ 4, |-, •]) is a real Lie algebra, (ii) 7, called by K. Mackenzie
[MA] an anchor, is a homomorphism of vector bundles, and Im 7 = F, (iii) Sec 7 :
Sec A — > £(M), £ i— » 7 o £, is a homomorphism of Lie algebras, (iv) [£, / • 77] =
/ • K,77] + (7 ° 0(/) ' »?, £, ?? e Sec A, f e n°(M).

In the case when F = TM, i.e. when 7 : A — > TM is a surjective homomorphism,
(3.1) is called a transitive Lie algebroid. Let A and A' be two regular Lie algebroids
on a manifold M. A homomorphism H : A - — -> A' of vector bundles is said to be
a homomorphism of Lie algebroids if 7' o H — 7 and Sec # : Sec ^4 — > Sec A' is a
homomorphism of Lie algebras.

The short exact sequence

(3.2) 0 — ̂ g-^ A-^ F — » 0

is called the Atiyah sequence of (3.1). Each fibre g x, x G M, possesses some
natural structure of a Lie algebra defined by [v,w] := |$,??l(ar), where £,77 G Sec ^4
are arbitrarily taken cross-sections of ^4 such that £(x) = v, z/(x) = w. For a
transitive Lie algebroid (3.1), g is a LAB [Kl], [MA].

(a) The following are simple examples of transitive Lie algebroids:
'

3.1. Finitely dimensional real Lie algebra g.

3.2. Tangent bundle TM to a manifold M.

3.3. Trivial Lie algebroid TM x g [NVQ] where $ is as in 3.1.

3.4. Bundle of jets JkTM [LI].

(b) The following are important examples of transitive Lie algebroids:

3.5. The Lie algebroid A(P) of a G-principal bundle P = P(M,G). One of
the definitions of A(P) is as follows: A(P) — TP/G is the space of orbits of the
right action G on TP given by differentials of the right translations (see [L2], [MA],
[Kl]). The anchor: 7([t/]) — TT*(Z;). The bracket is constructed on the basis of the
following observation: for each cross-section 77 6 SecA(P), there exists exactly one
C°° right-invariant vector field ?/ G JH(P) such that [?/{£)] = ^(^2), 2 G P, and
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the mapping SecA(P) —» XR(P), r\> ?/, is an isomorphism of O°(M)-modules.
The bracket [£, 77] for £, 77 e Sec ̂ 4(P) is defined in such a way that [£, 77]' = [£', 77'].

The Lie algebroid A(_P) is a simpler structure than a principal bundle P. Namely,
nonisomorphic principal bundles can possess isomorphic Lie algebroids~. For exam-
ple, there exists a nontrivial principal bundle for which the Lie algebroid is trivial
(the nontrivial Spin(3)-structure of the trivial principal bundle R(5) x SO(3) has
this property [Kl]). A transitive Lie algebroid is said to be integrable if it arises
from a principal bundle.

3.6. General form of a transitive Lie algebroids. Every transitive Lie alge-
broid is — up to an isomorphism — of the form described below. This was done
by K. Mackenzie [MA] and, independently, by J. Kubarski [Kl].

Let a system ($,V,fi&) be given, consisting of a LAB g on a manifold M, a
covariant derivative V in g and a 2-form £7^ € Q2(M,g) on M with values in g,
fulfilling the conditions: (1) V2a —-[il6 ,a], a 6 Seep, (2) Vx[0"5 rj\ [V^cr, TI] +
[<j,Vx?7], X 6 £(M), a, 7] e Secg, (3) V06 = 0. Then TM ®g forms a transitive
Lie algebroid with the bracket defined by [(X,er), (Y,rj)\ ( [ X , Y ] , - S l b ( X , Y ) +
Vx'n — Vx<7+ [a, 77]), and the anchor being the projection onto the first component.

As Mackenzie noticed [MA], this theorem leads to the first step (called algebraic)
of a solution of a long-standing problem of A. Weil: Given a 2-form ^5 E £72(M;#),
when is it the curvature tensor of a connection in a principal bundle P(M, G) over
M with g as the Ad-associated Lie algebra bundle ? The second (last) step is the
theorem [MA], [A-M] giving the integrability obstruction of the constructed Lie
algebroid TM ®0.

3.7. The Lie algebroid CDO(f) of covariant differential operators on a
vector bundle f [MA]. An isomorphic construction of this object is the Lie
algebroid A(f) of a vector bundle [K3]; here the fibre ^(f)^ is the space of
linear homomorphisms / : Sec f —> f i x such that there exists a vector u G TXM
for which l ( f - v ) = f(x)-l(v] + u ( f ) - v x , f G O°(M)7 v G Secf. A cross-section
£ G Secyl(f) defines in an evident manner a covariant differential operator in f. The
bracket of cross-sections of A(f ) is defined classically for differential operators. A( f )
is naturally isomorphic to the Lie algebroid of the G*L(Vr)-principal bundle (V is
the typical fibre of f) of all repers of f. Locally, i.e. over some neighbourhood U of a
point of M, the Lie algebroid A(f) u is isomorphic to the trivial one TU x End(F)
[K3, 5.4.4].

3.8. The Lie algebroid A(M, JT) of a transversally complete foliation (Af, J7)
of a connected Hausdorff paracompact manifold M. We recall that a folia-
tion (M,JF) is said to be transversally complete (TC for short) if, at each point
x G M, the family LC(M, T] of complete global ^"-foliate vector fields generates the
entire tangent space TXM. We add that (a) transversally complete foliations per-
form a crucial role in the theory of Riemannian foliations [MO2], (b) among them
there are ones whose Lie algebroids are not integrable. This last fact — discovered
by R. Almeida and P. Molino in 1985 [A-M] — was one of the most important
moments in the theory of Lie algebroids.

The first structure theorem of Molino [MO2. Th. 4.2] says that the closures of
leaves of a TC-foliation T form a simple foliation ̂ i, called basic, and are the fibres
of a locally trivial basic fibration 715 : M —> W onto the Hausdorff paracompact
basic manifold W.
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Let Q = TM/E (E = TF) be the transverse bundle of T. A cross-section £ of Q
having a foliate vector field as its representative is called a transverse field. Its value
at a point x € M determines uniquely the value at any point y of (Lb)x, the leaf of
the basic foliation T\> through x. Transverse~fields play a role analogous to that of
right-invariant vector fields on principal bundles. The quotient A(M,f) = Q/ ~
of Q by the relation identifying the values of transverse fields at points of a leaf of
Fb [corresponding to the right translations of vectors tangent to a principal bundle]
has a natural structure of a vector bundle over W. The global cross-sections of
A(M,F) correspond to transverse fields. These last yield a Lie algebra; so does
SecA(M, f}. Together with the homomorphism 7 : A(M,F) —*• W defined simply
by the use of the fibration n^ : M —> W, we obtain a transitive Lie algebroid.

3.9. The Lie algebroid A(G\H) of a nonclosed Lie subgroup H of G. It
is the Lie algebroid of the TC-foliation FG,H = {aH;a G G] of left cosets of a
Lie group G by a connected Lie subgroup H C G [If H is closed, then A(G\) is
trivial, so this Lie algebroid has a meaning only if H is not closed]. A(G\) can be
constructed without using the general theory of TC-foliations [K2], since its total
space is equal to the space of orbits of the right free action R : Q x H —> Q of the
closure H of H on the transverse bundle Q, such that, for t £ H, Rt : Q —» Q is an
automorphism determined by the differential of the right translation Rt : TG —* TG
with the use of the stability of E under Rt - A cross-section £ of Q is a transverse
field if and only if £ is invariant with respect to the action R. Therefore, the relation
"=" on Q which gives A(G\) is defined by: v = w <=> 3t 6 H, Rt(v) = w.

(c) Examples of nontransitive (in general) Lie algebroids.

3.10. A LAB is a totally nontransitive Lie algebroid [MA].

3.11. Any C°° constant dimensional involutive distribution E C TM.

3.12. Any regular Lie algebroid (3.1) over (M, F) and any involutive sub-
distribution Ff C F determine a new regular Lie algebroid (AF , [•, -],7F ), this
time over (M, F'), in which AF ~ 7 1[F/], 7^ — 7 AF , whereas the bracket of
cross-sections of AF forms a Lie subalgebra of Sec A.

3.13. Any Lie equation R C Jk(TM).

3.14. The Lie algebroid (T*M, [ - , - ] , 7) of a Poisson manifold (M, {-,-})
[C-D-W]. The bracket [-,-] of 1-forms is defined uniquely by demanding that
\df,dg\ d { f , g } for f , g e fi°(M), whereas the anchor j(df) is equal to the
Hamiltonian vector field corresponding to /.

3.15. The Lie algebroid i*Ta$ of a differential groupoid $ [P]. Here Ta$
is the vector bundle of a-vertical vectors, while i : M '—> $ is the inclusion of the
manifold of units. Particularly, we have: _

3.16. The Lie algebroid of an action T : M x G —> M of a Lie group G on
M, because T determines a structure of a differential groupoid on M x G with
the source a(x,g) — x, the target (3(x,g) = x • g, and the partial multiplication
(z,0) -(x-g,h) = (x,g-h).

4. PARTIAL CONNECTIONS IN REGULAR LIE ALGEBROIDS

By a phconnection in a regular Lie algebroid (3.1) over (M,F) we mean a ho-
momorphism of vector bundles A : F —» A, such that 7 o A = idp, i.e. any splitting
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of the Atiyah sequence (3.2) of (3.1). The uniquely determined homomorphism
(jj : A —> g for which u; g — id and uj Im A = 0 is called the connection form of
A. By the curvature tensor of A we shall mean the tangential differential 2-form
ft6 G Sl2F(M]g) defined by

n f V V \ f fT \> V \ V H'\ t- O~n IT1&(A!, A2J = —CJ(|[A o A i , A o A 2 j j , A j G beC-T.

We recall that the space QkF(M\g) of tangential differential k-forms on (M,F)
with values in g is the space of cross-sections of the vector bundle /\* (& g.

Definition 4.1. Let (A, [ - , - ] , 7) be a regular Lie algebroid over (M, F). By a
partial connection in A over F', F' being an involutive subbundle of F, we mean
any linear homomorphism A' : F' —> A such that 7 o A' = idp>, i.e. equivalently,
any connection in the regular Lie algebroid AF := 7~1[F/] over (M, F7) (see Ex.
3.12).

Remark 4.2. The term "partial connection" comes from the theory of foliated prin-
cipal bundles [K-T] and means, for a given principal bundle F, some right-invariant
horizontal subbundle of TP projectable onto a distribution F' on M. Besides, there
is a one-to-one correspondence between partial connections in F over an involutive
distribution F' and partial connections over F' in the Lie algebroid A(P) of P.
Via this correspondence, to a flat connection there corresponds a flat one. This
correspondence looks as follows: with a connection A : F —»• A(P)F we associate a
partial connection Hx C TP projectable onto F, defined by H^z — (7r^)~1[Im A^],

z G F, where n : P —>• M and TTA : TP —> A(P) are the canonical projections. The
observation concerning the equivalence of the flatness of A and Hx follows from the
relation

between the curvature tensor ft& G ft^(M;#) of A and the curvature form ft G
ft~(F; g) of any connection in F adapted to Hx (0 is the Lie algebra of the structure
Lie group of F). In this relation vz denotes the horizontal lifting of v, whereas
-z : 9 ~* 9 TTZ is an isomorphism defined by z(u) = [(Az)*e(u)], u G 0, where
Az '• G —> F, a i-» z • a. We add that z is an isomorphism of Lie algebras provided
that in g we have the right Lie algebra structure of G.

A connection A : F —* A in a regular Lie algebroid (3.1) over (M, F) is said to
be adapted to a given partial connection A; over F' C F if A' = A|F;. It is evident
that an adapted connection always exists.

Consider in a regular Lie algebroid A over (M, F) a connection A and a par-
tial connection A; over F'. Let uj and u/ be the connection forms of A and X',
respectively, and let ft^ and ft£ be the curvature tensors of these connections.

Proposition 4.3, If X is adapted to Xf and j0 : F' ^ F is an inclusion, then
ftj, = j*ft&, where j*ft& is defined by the obvious formula

Proposition 4.4. If X is adapted to X'', then the following conditions are equiva-
lent:

1. A; is flat, ' •' ' " • ' ' '
o i' * o, n^. joi£5 — u, . . , . - ; •

3. i(a)((v*,Qb\)) = 0 for all x e M, a G A2 F'x> ana v* ^ 9\> ''
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4. (v*, ftfeia.) G lf/± for all x G M and v* € g*x.
\x

Proof. (1)^(2) is evident by 4.3. (2)^(3) is ̂ trivial, whereas (3)«=>(4) follows
from 2.1. D

Any foliated principal bundle [K-T] determines, clearly, a transitive Lie algebroid
with a flat partial connection.

Definition 4.5. A connection A adapted to A' is said to be basic if

ixflb = Q for all X G SecF'.

Proposition 4.6. Let a connection A be adapted to A'. Then

A) the following conditions are equivalent:
(1) A is basic,
(2) i(a)((v*,n6ja :)) =0 for allxe M, a G F'x, and v* £ g*x,

(3) (^,^6]x}€/ ( 2 ) 2 forallxeM and v* £ g*x;
A |x

B) if A ts fraszc, then X' is flat.

Proof. A): (1)^(2) is clear, and (2)^(3) follows from 2.1. B) is evident. D

Remark 4.7. We describe here shortly some obstructions to the existence of a basic
connection. Assume that A is adapted to A'. This produces an exact short sequence
of vector bundles

(4.1) 0 — > g ^ A/lmX'—>F/Ff —> 0

whose splittings are in 1-1 correspondence to adapted connections. More precisely,
u> (—> LJ o c (where c : A —> ^4/ImA7 is the canonical projection) establishes this
correspondence. Passing to spaces of cross-sections and using the paracompactness
of M, we get the following exact short sequence of n°(M)-modules:

(4.2) 0 —> Sees ̂  Sec(A/lmXf)—>Sec(F/F/) —* 0.

There are representations of the Lie algebra Sec F1 in all n°(M)-modules occurring
in (4.2), namely, for X1 E SecF7, they are defined by

(a) (*»•-> [A oX>], z / G Seep,
(b) (X9, [£]) - [[A oX'^I], H G Sec(A/ImAO for ̂  G Sec A,
(c) (A"', [y]) ̂  [[X',Y}], [Y] G Sec(-F/F') for Y G SecF.
One can prove that
— a basic connection exists if and only if

(*) sequence (4.2) has a splitting in the category of £l°(M)-modules, being equi-
variant with respect to the above representations.

More precisely, for a splitting u of (4.1), u> o c is a basic connection form if and
only if Seco' : Sec^/ImA7) —> Seep is an equivariant homomorphism.

Condition (*) can be equivalently formulated in the terms of the vanishing of a
suitable element of some sheaf cohomology group.

5. BOTT'S VANISHING THEOREM FOR REGULAR LIE ALGEBROIDS

The aim of this section is to prove the following theorem concerning the Pon-
tryagin algebra Pont(^4) of a regular Lie algebroid A.
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Theorem 5.1 (Bott's Vanishing Theorem). Let (3.1) be a regular Lie algebroid
over (M, F) . If there exists a flat partial connection A' in A over F' C F, then

Poutp(A) - 0 for p > 2 • (q + 1),

where q = r&nk(F/Ff), If, moreover, X' admits a basic adapted connection, then

-0 for p>q+\.

Proof, (i) If A' is a partial connection in A over F1 ', then, for each point x € M,
the algebra /\* possesses a decreasing filtration by ideals

which determines the decreasing filtration by ideals of the algebra Q.p(M):

x e M, 6X € FP(/\F*X)}

(ii) For an arbitrary connection A in A, consider the homomorphism of algebras
[K3, s.4.1]

fc ti

where f2^ € fi^(M-) is the curvature tensor of A, whereas

is defined by the formula

f i b V • • • V^6(x;^i A • • •
== ̂  •ECTsgncr '^fe( ; r;^(i) Av f f ( 2 ) ) V - - - vn&x;t;ff(2fc_i) Av f f ( 2 / f e

The algebra /°(^4) has a standard even decreasing filtration by ideals

(iii) The crucial part of the proof of our theorem is based on the following:

Lemma 5.2. //A is a connection in A adapted to a flat partial connection X' over
Ff , then the homomorphism X(A,\] ^s filtration-preserving in the sense that

if A is, in addition, basic, then

Proof of the lemma. Because of the fact that X(A,\] is a homomorphism of al-
gebras, and that the ideals F2p(/°(,4)), FP(0F(M)) and F2p(O^(M)) are the p-th
powers of the ideals /seep*? Sec(/p/j.) and Sec( /A2 ±), respectively, see Proposi-

tions 2.2-2.3, it suffices to check that
(a) X(A,A)[Sec0*] c Sec(/F/x),
(b) for a basic connection,

C
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However, for F G Seep*, X(A,A)(F) x = (rx,O6|x}, &nd so (a) and (b) follow from
4.4 and 4.6, respectively, which ends the proof of our lemma. D

(iv) To prove our theorem, assume that in A there is a flat partial connection,
say A', over F1 . Take arbitrarily an adapted connection A. If q ~ rank(F/F') (=

, we have a simple but important observation:

' - ) = o for p>q+L

In consequence,
=0 for p>

Lemma 5.2 now implies in our situation the relation

for p > q 4- 1, and under the additional assumption that A is basic, such a relation
for 2p > q + 1, i.e. for p > [g/2] + 1. Passing to cohomologies, we obtain our
theorem because Pontp(^4) = H^(M) film/I^ and the Chern-Weil homomorphism
HA is defined on the level of forms via X(A,\] f°r an arbitrarily taken connection A.
D

Remark 5.3. For A — A(P), P being a connected principal bundle, we obtain the
classical Bott's Vanishing Theorem for foliated principal bundles [K-T] because

(a) between connections in A and connections in P there exists a bijection which
maps connections in A, flat over a given distribution F c TM, into connections
flat over this distribution (see Remark 4.2),

(b) the Chern-Weil homomorphisms HA and hp are equivalent in the sense of
Th.1.1 (particularly, Pont(P) = Font (4)).

Remark 5.4. The following statement is an immediate corollary from Th.5.1:
- — // Poutp(A) 7^ 07 then there exists no flat partial connection A' in A over

any involutive distribution F' C F such that

rank F1 > rank F + 1 - p/2,

and, moreover, such that A7 — additionally — admits a basic adapted connection
and

rank F1 > rank F + 1 — p.

Remark 5.5. When seeking for an involutive subdistribution F1' C F over which
there exists a flat partial connection and which is contained in a given involutive
subdistribution F C F, some obstructions in lower dimensional cohomology groups
appear. Namely, we have

Pontp(AF') = 0 for p > 2(q + 1 - rank(F/F'))

where, oT course, q = rank(F/F"). However, they are in the tangential cohomology
groups Hp'(M) on M with respect to F' , not to F. On the other hand, in [K4]
there is a suggestion that the vanishing of Pontp(A) does not imply, in general,
the vanishing of Pontp(y4/ ), which may be, additionally, a new impulse to the
consideration of the Pontryagin algebra Pont(^4/' ) instead of Pont(.A).

As a more concrete example, consider some nonorientable Riemannian vector
bundle f of rank 2m and the connected 0(2m; ̂ -principal bundle P of orthonormal
repers of f, corresponding to it, and further, the transitive Lie algebroid A = A(P).
We have Pont2m(P) = 0 (and, of course, Pont^(F) = 0 for k > 2m). In [K4] there
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is a conjecture that there exists an example of f and an involutive distribution F'
on the base M of f for which

(5.1)-

Applying Th.5.1 to the Lie algebroid AF , we obtain that, under condition (5.1),
— there is no involutive subdistribution F" C F' over which there exists a

flat partial Riemannian connection in f, such that 2m > 2(rank(F'/F") + 1); i.e.
equivalently, that

rank F" > rank F' + 1 - m.

6. BOTT'S PHENOMENON FOR TC-FOLIATIONS

Every transversally complete foliation (M, F) possesses a transitive Lie algebroid
A(M,F) (see [MO1], [MO2] and, for more details, [K3]).

— What does Bott's Vanishing Theorem assert for a TC- foliation ?
To answer this question, we need to explain the notion of a flat partial connection

in A(M) F) in the language of the foliation (M, F).
Let (M, F) be a given TC-foliation of a connected HausdorfT and paracompact

manifold M, see Ex. 3.8. Let E and E^ be the vector bundles tangent to f and to
the basic foliation T^ , respectively; let L(M, F) and /(M, f) denote the Lie algebras
of foliate vector fields and transverse fields, respectively; whereas a : TM — *• Q and
f3 : Q —> A(M,F) denote the canonical projections. In [K3] there is obtained a
canonical bijection

(6.1) A .— + Cx := o^I/r^ImA]]

between connections in A(M, F) and distributions C C TM such that (i) EbC\C =
E, (ii) Eb + C = TM, (iii) L(M,f) n SecC generates at each point x 6 M the
entire vector space C\. We add that a connection A is flat if and only if the
corresponding distribution Cx is involutive.

A distribution C fulfilling (i)-(iii) above is called an T- connection (or a con-
nection in TM for the TC-foliation (M, .F)).

For any distribution F on the basic manifold W we define a distribution F on
M by

7 being the anchor in A(M, JF). Notice that rankF = rank.F + r^ r^
Clearly, we have

6.1. The. correspondence F — > F establishes a bijection between involutive C00

distributions on W and distributions F on M such that (a) F is involutive, (b)
Efj C F, (c) L(MjJ^) OSec-F1 generates at each point x G M the entire vector space

Each distribution on M satisfying (a)-(c) above is called an ^"-distribution.
Now, pass to partial connections. Let F C TW be any involutive distribution

on W and A : F —> A(M, F)F any partial connection in A(M.f) over F. Put

Proposition 6.2. The correspondence A i—*• Cx establishes a bijection between
partial connections in A(M,F) over F and distributions C C TM such that (i)
Ebf\C = E,(ii) Eb + C = F,(m) L(M, T] nSec(7 generates at each point x G M

entire vector space Cx. .

' *•-' ' ' - • r ' f t* .
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In particular, such a distribution C exists and is C°°. A partial connection A is
flat if and only if the corresponding distribution Cx is involutive.

Proof. The bijectivity of the correspondence is easy to-obtain. To prove that
a flat partial connection passes to an involutive distribution (and vice versa), take
the connection form u> : A(M,F}F — > g and the curvature tensor £lb G Qfi(W;#)
of a partial connection A over F. Next, analogously to [K3, Def.6.3.2], we define
the so-called connection form LO : F — > Q' and curvature form H G Qs(M; Q') of
Cx (Qf :— Eb/E) in such a way that diagrams

commute for each x G M (rr := TT&(X)). Analogously to [K3, s.6.3.4] we prove that

(6.2) tt(Y1,Y2) = -<D([KoYljKoY2\)

for Fi G L(M,F), where K : F -^ F is the horizontal projection defined as
the projection onto the second component with respect to the decomposition F =
Ffc 0 Cu, where Cu C Cx is an arbitrarily taken subbundle such that Cx — E © <7U.
Next, using (6.2), we can prove the equivalence of the conditions: (i) O& = 0, (ii)
0 = 0, (iii) L(M, J^") n Sec C is a Lie subalgebra of L(M, JF), (iv) CA is involutive.
This ends the proof. D

Each distribution C satisfying (i)— (iii) from Proposition 6.2 is called a partial
F -connection (or a partial connection for (M,J-)) over F,

Since the codimensions of the foliations determined by F and F are equal to
each other, we obtain (as a corollary from 5.1) the following

Corollary 6.3 (Bott's Vanishing Theorem for TC-foliations). // there exists an
involutive distribution C on M satisfying (i)-(iii) from 6.2 for a distribution F
on M satisfying (a)-(c) from 6.1, then

Pontp(A(M, .F)) = 0, p > 2 • (q + 1),

where q = codimF. D

7. BOTT'S PHENOMENON FOR NONCLOSED LIE SUBGROUPS

Let H be a connected Lie subgroup of a connected Lie group G and A(Gr, H) its
Lie algebroid (see Ex. 3. 9). We start with a technical lemma.

Lemma 7.1. Let C C TG be a C°° distribution on G containing E. Then the
condition _

(*) L(G^Jr) H Sec (7 generates at each point g G G the entire vector space C g

is equivalent to
(**) C is stable under the action R : TG x H — »• TG of H on TG by differentials

of the right translations on G.

Proof. (*)=>(**). Take arbitrarily g E G and v G C\. Find a vector field X 6
L(G, ̂ rc7;//)nSecCf such that Xg = v. Since the cross-section X of Q corresponding
to X is a transverse field, we have, for t € H7 Xgi = Rt(Xg), i.e. Xgi — Rt(Xg) G
E gt. The relation Xgi G C\ implies Rt(v) = Rt(Xg) G C gt-
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(**)=>(*). Assume C to be ^-stable. C determines a C°° vector subbundle
C' = C/E C Q which is ̂ -stable. This implies that there exists a vector subbundle
C C A(G\H) such that C\-g = (3\\P 9], g := ^b(g) ((3 : Q -» A(G\H] is the
canonical projection). Reasoning similar to that in Step 3 of the proof of Th.3.4
from [K2] gives that C is C00. To prove that condition (*) holds, take v G C\
and put u := [v] G A(G\H)\g ([v] := f3 o a ( v ) ) . Since u G Cj^ and C is a C°°
vector bundle, there is a C°° cross-section £ of C such that ^ — u. Next, there
exists a foliate vector field X G L(G,F) which determines £. By the construction,
X G L(G, F) H Sec C and Xg — v G E1^. Adding, if necessary, a suitable vector field
from j6(^r) to X, we obtain a vector field which is foliate, lying in C, and has at g
the vector v as its value. D

As consequences we obtain a number of corollaries.

Corollary 7.2. A C°° distribution C on G is an ^-connection if and only if (i)
Eb n C = £?, (ii) £6 + C = TG? (iii) C is R-stable. D

Corollary 7.3. .4 C°° distribution F on G is an f-distribution if and only if (a)
jF1 is involutive, (b) ^ C F, (c) F is R-stable. D

Corollary 7.4. ^4 C°° distribution C on G is a partial f-connection over an T-
distribution F if and only if (i) E^r\C = E, (ii) Eb+C = F, (iii) G is R-stable.
n

In [K3, Ex.7.4.7] it is shown that the G-left-invariant distribution C on G gen-
erated by a Lie subalgebra c C g of g such that (i) c + I) = 0, (ii) c fl f) ~ t), is
a fiat ^G;//-connection (g, f j , ^ denote the Lie algebras of Lie groups G, H and ^}

respectively). Since h^G.H, ^ 0 for G a compact and semisimple Lie group and H
nonclosed [K3. Th.7.4.3], we obtain that no Lie subalgebra c, satisfying (i) and (ii)
above, exists.

In the cited work [K3], in fact, the more detailed result, namely, h\(Q.H\ 0
is proved. See also [K2] where it is shown that the Lie group U(2) possesses a
nonclosed connected Lie subgroup H for which ft^m/aVH) ̂  ^- Such results are the
sources of some strengthening of Cor.7.4.7 from [K3], basing on Bott's phenomenon.

We start giving some examples of .F-distributions on G. We see without difficulty
the following lemma.

Lemma 7.5. (1). 7/f C 0 is a Lie subalgebra of Q such that fj C f then the G-left-
invariant distribution F(f) C TG determined by f is an T-distribution. (2). The
corresponding involutive distribution F(f) C T(G/H) on the homogeneous space
G/H is G-left-invariant (with respect to the standard left action of G on G/H by
left translations) and generated by f / f j . Besides, codimF(f) — codimf. n

Some Lie subalgebras of G are the sources of partial connections in A(G\.

Lemma 7.6. I f c C Q i s a vector subspace of Q such that

(i) en|=i),
(ii) c -f F) is a Lie subalgebra of Q, say f ?

(iii) AdG(t)[t\ c forteH,
then the G-left-invariant distribution C(c) generated by c is a partial ^-connection
over F(f). The partial connection in A(G\H) over F(f), corresponding to C(c), is
flat if and only i f t is a Lie subalgebra. D
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Remark 7.7. Condition (iii) above is equivalent to
(Hi7) Adc?(i)[c] C c for t G H, and also to
(iii") [§,4-C c (by the connectedness of H, see [-G-H-V; VoLII]).

Remark 7.8. A vector subspace c C g that satisfies (i) and (ii) from 7.6 and is a
Lie subalgebra of g fulfils condition (iii), as well. In the case f = g, i.e. if c + f) = g,
we obtain the examples of the ^"-connections considered in [K3][Ex.7.4.7].

Now, we answer the question:
— When does a connection in A(G\ determined by a Lie subalgebra c C g

admit a basic adapted one ?

Theorem 7.9. //c and f are Lie subalgebras of g such that
(i) c H I) = f),

(ii) c + I) = f,
(iii) f is reductive in Q,

then the flat connection in A(G\ determined by the ^-connection C(c) admits a
basic adapted one.

[Condition (iii) above holds, for example, in the situation when the connected Lie
subgroup of G having f as its Lie algebra is compact.]

Proof. The reductivity of f in g means that the adjoint representation adg

restricted to f, adg f : f —> Endg, is semisimple. Therefore there exists an (adg f)-
stable vector subspace Ci C g complementary to f, i.e. such that (a) [f, ci] C Ci ,
(b) ci 8f = g. Define

c : = c i © c .
We prove that:

(1°) The G-left-invariant distribution C(c) on G determined by c is an ^"-con-
nection.

(2°) The connection in A(G\) determined by (7(c) is basic and adapted to the
flat connection determined by C(c).

According to 7.6-7.7, to prove (1°), we need to observe that (i) c n fj = rj, (ii)
c + jj = g, (iii) [I),c] c c.

(i): Let v G c n f). Write v = vi -\- v, vi G Ci , v G c. This implies that
vi = v - v G ci n (i) + c) = ci n f = o. So, v = v G i) n c = tj.

(ii): c 4- jj = (ci © c) -f I) C Ci + (c_+ fj) = Ci + f = 0,

Clearly, the connection in A(G\) determined by c is adapted to that determined
by c. It remains to show that it is also basic. For the purpose, take the curvature
form f2 G O2(G; Q') of C(c) (see the proof of Proposition 6.2 for its definition). It
is trivial to assert that the connection in A(G\) determined by c is basic if and
only if iv£l = Qjor v G -F(f). We prove that this condition can bejreduced to

(7.1) i v ( & e ) = 0 for v G f ,

concerning the value of £1 at the unit e G G, due to the commutativity of the
diagram

TnG x TgG

Jg •

Hi

(7.2) •- • \LsxL9

O, _

f>/l)
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where Lg and Lg are determined (in an evident manner) by the left translations on
G. We now prove the commutativity of (7.2).

Let K \_TG —» TG be the horizontal projection with respectto the decomposition
TG = Eb 0 C(cu © Ci) where cu C c is any vector subspace such that f = fj 0 cu, and
C(cu ® Ci) is the <7-left-invariant distribution generated by cu © Ci. Then we have:

(a) the equality K o Xv — XK ^ for v € 5, where Xv stands for the left-
invariant vector field generated by v;

(b) for uj £ n1(Gf; <3') — the connection form of C(c), see the proof of 6.2 —
the equality

with io\ equal to the composition

Prom the above and equality (6.2) (which holds for arbitrarily taken vector fields
Y\, Y%) we obtain, for v, w 6 g,

0|5(L>),L,H) = fl(Xv,Xw)(g)
= -u((KoXv,KoXw})(g)

- -LgQ\([KoXv,KoXw])(e))

= Lg$l\(V)W)

( [ - , - ] denotes the bracket in the left Lie algebra of 6?), which proves the commu-
tativity of diagram (7.2) and, simultaneously, the equality

A e ( v , w) = - u ] e ( ( K l e ( v ) , K l e ( w ) } L ) - -u,le o [., .]L 0(Kex K e ) ( v , w).

This formula and (b) above yield that condition (7.1) is equivalent to [cu, c u©Ci] C c
because

n e f x 0 = 0 & [ . , . ] L [ ^ ( e [ f ] x 7 r e [ g ] ] c c ,

and K\[f] = cu and ImK\ = cu © ci-
On the other hand, since c is a Lie subalgebra and Cj is (adg |f)-stable, we have

[ c U ) c u © c i ] C [cu ,cu] + [cu ,c i] C [c,c] + [f, ci] C c + ci = c. D

In [K3] the following theorem is proved.

Theorem 7.10. [K3, 7.4.2] The Chern-Weil homomorphism hA(G-,H) °f
algebroid A(G;H] makes the diagram ___

hP

commute for some isomorphism Q of algebras, in which \J j* is a monomorphism
of algebras induced by the canonical projection j ' : f) — > f)/^7 whereas hp is the
Chern-Weil homomorphism of the H -principal bundle P = (P —> G/H). D
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This theorem, Corollary 6.3, Lemma 7.6 and Theorem 7.9 yield the following
main theorem of this section:

Theorem 7.11— (Bott's phenomenon for nonclosed Lie subgroups) r-If the compo-
sition

is nontrivial (for some positive integer k ), then there exists no Lie subalgebra c C g
such that

(i) c n | = i L
(ii) c + I) is a Lie subalgebra of Q of codimension > k — 1.

Also, there exists no Lie subalgebra c C 0 such that
(i) as above,

(ii') c + 1) is a Lie subalgebra reductive in g, of codimension > 2k — 1. D

Finally, as an example we consider the case of a compact Lie group and a maximal
torus T C G. For the T-principal bundle P - (G -> G/T), we have [G-H-V, Vol
III]

P^nf71"7™ — Tjn —Fontp - UdR

where n = dim G and m — dim T. Therefore
|(n— rn)

T n— m , \ i* _ _
hP • V l -

is a nontrivial surjective linear homomorphism (t being the Lie algebra of T).

Problem 7.12. Find all Lie subalgebras rj C t such that the Lie group H deter-
mined by f) is dense in T and the composition

is nontrivial. Any such Lie algebra f ) , according to Th.7.11, admits no Lie subalge-
bra c of g having the properties for k = ~ (n — m) indicated there. The existence of
such a Lie subalgebra f) was asserted for G = U(2) in [K2, Ex. 4. 3].
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